skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meng, Lin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary The spring phenology has advanced significantly over recent decades with climate change, impacting large‐scale biogeochemical cycles, climate feedback, and other essential ecosystem processes. Although numerous prognostic models have been developed for spring phenology, regional analyses of the optimality (OPT) strategy model that incorporate environmental variables beyond temperature and photoperiod remain lacking.We investigated the roles of solar radiation (SR) and three water stress factors (precipitation (P), soil moisture, and vapor pressure deficit (VPD)) on spring phenology from 1982 to 2015 using the OPT model with Global Inventory Modeling and Mapping Studies NDVI3g dataset and environmental data from TerraClimate, CRU_TS, and Global Land Data Assimilation System across the Northern Hemisphere (> 30°N).Our results show that SR and water stress factors significantly impacted intrasite decadal spring phenology variability, with water stress factors dominant in grassland ecosystems while SR dominated in the rest of the ecosystem types. Enhanced models incorporating SR (OPT‐S) and VPD (OPT‐VPD) outperformed the original OPT model, likely due to improved representation of the adaptive strategy of spring phenology to optimize photosynthetic carbon gain while minimizing frost risk.Our research enhances the understanding of the key environmental drivers influencing decadal spring phenology variation in the Northern Hemisphere and contributes to more accurate forecasts of ecological responses to global environmental change. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Information on urban built-up infrastructure is essential to understand the role of cities in shaping environmental, economic, and social outcomes. The lack of data on built-up heights over large areas has limited our ability to characterize urban infrastructure and its spatial variations across the world. Here, we developed a global atlas of urban built-up heights circa 2015 at 500-m resolution from the Sentinel-1 Ground Range Detected satellite data. Results show extreme gaps in per capita urban built-up infrastructure in the Global South compared with the global average, and even larger gaps compared with the average levels in the Global North. Per capita urban built-up infrastructures in some countries in the Global North are more than 30 times higher than those in the Global South. The results also show that the built-up infrastructure in 45 countries in the Global North combined, with ∼16% of the global population, is roughly equivalent to that of 114 countries in the Global South, with ∼74% of the global population. The inequality in urban built-up infrastructure, as measured by an inequality index, is large in most countries, but the largest in the Global South compared with the Global North. Our analysis reveals the scale of infrastructure demand in the Global South that is required in order to meet sustainable development goals. 
    more » « less
  3. Nelson, Karen E (Ed.)
    Abstract Artificial light at night (ALAN), an increasing anthropogenic driver, is widespread and shows rapid expansion with potential adverse impact on the terrestrial ecosystem. However, whether and to what extent does ALAN affect plant phenology, a critical factor influencing the timing of terrestrial ecosystem processes, remains unexplored due to limited ALAN observation. Here, we used the Black Marble ALAN product and phenology observations from USA National Phenology Network to investigate the impact of ALAN on deciduous woody plants phenology in the conterminous United States. We found that (1) ALAN significantly advanced the date of breaking leaf buds by 8.9 ± 6.9 days (mean ± SD) and delayed the coloring of leaves by 6.0 ± 11.9 days on average; (2) the magnitude of phenological changes was significantly correlated with the intensity of ALAN (P < 0.001); and (3) there was an interaction between ALAN and temperature on the coloring of leaves, but not on breaking leaf buds. We further showed that under future climate warming scenarios, ALAN will accelerate the advance in breaking leaf buds but exert a more complex effect on the coloring of leaves. This study suggests intensified ALAN may have far-reaching but underappreciated consequences in disrupting key ecosystem functions and services, which requires an interdisciplinary approach to investigate. Developing lighting strategies that minimize the impact of ALAN on ecosystems, especially those embedded and surrounding major cities, is challenging but must be pursued. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Urbanization has caused environmental changes, such as urban heat islands (UHIs), that affect terrestrial ecosystems. However, how and to what extent urbanization affects plant phenology remains relatively unexplored. Here, we investigated the changes in the satellite-derived start of season (SOS) and the covariation between SOS and temperature ( R T ) in 85 large cities across the conterminous United States for the period 2001–2014. We found that 1) the SOS came significantly earlier (6.1 ± 6.3 d) in 74 cities and R T was significantly weaker (0.03 ± 0.07) in 43 cities when compared with their surrounding rural areas ( P < 0.05); 2) the decreased magnitude in R T mainly occurred in cities in relatively cold regions with an annual mean temperature <17.3 °C (e.g., Minnesota, Michigan, and Pennsylvania); and 3) the magnitude of urban−rural difference in both SOS and R T was primarily correlated with the intensity of UHI. Simulations of two phenology models further suggested that more and faster heat accumulation contributed to the earlier SOS, while a decrease in required chilling led to a decline in R T magnitude in urban areas. These findings provide observational evidence of a reduced covariation between temperature and SOS in major US cities, implying the response of spring phenology to warming conditions in nonurban environments may decline in the warming future. 
    more » « less
  7. Abstract Vegetation phenology in spring has substantially advanced under climate warming, consequently shifting the seasonality of ecosystem process and altering biosphere–atmosphere feedbacks. However, whether and to what extent photoperiod (i.e., daylength) affects the phenological advancement is unclear, leading to large uncertainties in projecting future phenological changes. Here we examined the photoperiod effect on spring phenology at a regional scale using in situ observation of six deciduous tree species from the Pan European Phenological Network during 1980–2016. We disentangled the photoperiod effect from the temperature effect (i.e., forcing and chilling) by utilizing the unique topography of the northern Alps of Europe (i.e., varying daylength but uniform temperature distribution across latitudes) and examining phenological changes across latitudes. We found prominent photoperiod‐induced shifts in spring leaf‐out across latitudes (up to 1.7 days per latitudinal degree). Photoperiod regulates spring phenology by delaying early leaf‐out and advancing late leaf‐out caused by temperature variations. Based on these findings, we proposed two phenological models that consider the photoperiod effect through different mechanisms and compared them with a chilling model. We found that photoperiod regulation would slow down the advance in spring leaf‐out under projected climate warming and thus mitigate the increasing frost risk in spring that deciduous forests will face in the future. Our findings identify photoperiod as a critical but understudied factor influencing spring phenology, suggesting that the responses of terrestrial ecosystem processes to climate warming are likely to be overestimated without adequately considering the photoperiod effect. 
    more » « less